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Introduction

The design of supramolecular receptors of anions based on
hydrogen-bond interactions is an area of much current inter-
est.[1] The relatively small strength of individual hydrogen
bonds and their directional character requires several hydro-
gen-bond donor groups to be arranged within the receptor
in a geometry allowing their simultaneous binding of the
anionic guest. This poses a considerable challenge to the
synthesis of the receptors. Transition-metal fragments have
been incorporated in the structure of anion receptors as car-
riers of positive charge or Lewis acid character.[2] In addi-
tion, those fragments can serve as scaffolds onto which the
hydrogen-bond donor groups can be attached by means of
simple ligand substitution reactions. This requires the em-
ployment of molecules containing both the hydrogen-bond

donor group and a metal binding site. Such a strategy is ele-
gantly exemplified in the synthesis by Beer and co-workers
of ruthenium complexes of 5,5’-diamido-2,2’-bipyridines,
which coordinate the metal center through the bipyridine
moiety and bind anions through the amide groups.[3] Bondy,
Gale, and Loeb demonstrated that simple monodentate nic-
otinamides could also be employed for the synthesis of re-
ceptors, leading to synthetic procedures considerably simpler
than those used for the preparation of most purely organic
receptors.[4] However, using monodentate ligands has two
important consequences. First, the geometry of the receptor
will be more entirely dictated by the metal fragment, the
choice of which becomes more crucial; thus, simultaneous
anion binding by at least two amide groups is made possible
in the receptors designed by Bondy, Gale, and Loeb by the
square-planar geometry of the nicotinamide complexes, in
turn enforced by the orbital preference of the PtII center.
Second, without the additional stability lent by the chelate
effect (as in the bidentate 2,2’-bipyridine ligands), the syn-
thesis of receptors stable toward metal-ligand dissociation
requires the choice of kinetically inert transition-metal cen-
ters, such as PtII.

We have recently reported the synthesis of the new recep-
tors [Re(CO)3(Hdmpz)3]BAr’4 (Hdmpz=3,5-dimethylpyra-
zole) (1) and [Re(CO)3(HtBupz)3]BAr’4 (HtBupz=3(5)-tert-
butylpyrazole) (2); Ar’=3,5-bis(trifluoromethyl)phenyl).[5]
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In these species, the geometry around the metal center in
the cationic complex is octahedral, and we hypothesized
that the fac disposition of the three pyrazole moieties could
allow a convergent orientation of the three N�H bonds and,
therefore, their simultaneous binding of an anionic guest.[6]

Moreover, three previously known, structurally character-
ized compounds (Scheme 1) reported by the groups of
Parkin,[7] Reger,[8] and Halcrow[9] can be considered as
models of such a supramolecular adduct.[10,11]

Cationic receptors of anions such as compounds 1 and 2
combine hydrogen bonding with coulombic attraction. In
cationic receptors, the counteranion competes to some
extent with the external anion. The tetraarylborate counter-
anion BAr’4

�1 in our receptors was chosen with the aim to
minimize this interference.

Here we report the detailed[12] study of the interaction be-
tween several anions and receptors 1 and 2.

Results and Discussion

The behavior of receptors 1 and 2 toward chloride, bromide,
iodide, hydrogensulfate, nitrate, and perrhenate was investi-
gated by means of NMR titrations with the respective tetra-
butylammonium salts in CD3CN. Receptor 1 was found to
undergo decomposition upon reaction with hydrogensulfate
(see below). In every other case, the receptors were found
to be stable against dissociation of the pyrazole ligands.[13]

Addition of the different anions to receptors 1 and 2 shift-
ed the 1H NMR signals of the N�H groups to higher fre-

quencies.[14] Fast anion exchange was found, and the binding
constants were calculated by using the WinEQNMR pro-
gram.[15] The results are summarized in Figure 1 (titration
profiles) and in Table 1.

For each receptor, the relative magnitudes of the associa-
tion constants for the halide anions studied correlate with
tendency to form strong H-bond interactions (Cl� > Br� >

I� ; see below for F�). This correlation extends to the anions
nitrate and perrhenate. For each anion, the strength of
anion binding is higher for receptor 1, a fact that can be at-
tributed to the hindrance imposed on the approach of the
anion by the bulky tert-butyl substituent present in the pyra-
zole rings of receptor 2.[16] The same factor can account for
the somewhat selective (toward chloride) character dis-
played by 2.

The treatment of receptors 1 or 2 with the anions men-
tioned above led to small shifts in the IR n(CO) bands
(3 cm�1 for the high energy band of 1 upon interaction with
chloride in CH2Cl2) toward lower wavenumber values. In
contrast, treatment of receptor 1 with tetrabutylammonium
fluoride caused a large lowering in the n(CO) values
(21 cm�1 for the higher frequency band), suggesting depro-
tonation of the receptor to afford a neutral complex (see
Scheme 2).

This was confirmed by the fact that identical IR n(CO)
bands were obtained when 1 was allowed to react with an
equimolar amount of triethylamine. The IR and 1H NMR
spectra indicated that the product was the complex
[Re(CO)3(Hdmpz)2(dmpz)], previously synthesized by Ar-
dizzoia, Masciocchi and co-workers by the reaction of
[ReBr(CO)3(Hdmpz)2] with 3,5-dimethylpyrazole and tri-
ethylamine.[17] A similar result was found when 1 was treat-
ed with tetrabutylammonium dihydrogenphosphate, al-
though in this case only partial deprotonation took place, as
indicated by the IR spectrum of the resulting mixture. Re-
ceptor 2 behaved similarly.

Attempts to grow single crystals of the adducts formed
between 1 or 2 and the different anions were successful only
for the combination 2/NO3

� . Slow diffusion of hexane into a
solution of an equimolar mixture of 2 and tetrabutylammo-
nium nitrate in CH2Cl2 at �30 8C afforded white crystals of
what was found to be the neutral adduct [Re(CO)3-
(HtBupz)3]·NO3 (3), whilst [Bu4N][BAr’4] remained in solu-
tion. The structure of the supramolecular adduct 3 was de-
termined by X-ray diffraction, and the results are summar-
ized in Figure 2 and Table 2. Two pyrazole ligands of an oc-
tahedral cationic complex fac-[Re(CO)3(HtBupz)3]

+ form
hydrogen bonds with one of the oxygen atoms of a nitrate
anion (N···O=2.800(6) and 2.838(5) O), and the third pyra-
zole is hydrogen-bonded to one of the oxygen atoms of an
adjacent nitrate anion (N···O=2.849(6) O), resulting in a
crystal structure consisting of infinite chains.[18]

It is instructive to compare the structures of 2[12] and 3.
The N-Re-N angles in 2 are 85.75(16), 84.07(16), and
83.47(16)8. In 3, the angles are 83.88(13), 83.48(13), and
92.15(13)8, the latter and wider angle corresponding to the
two pyrazole ligands that are simultaneously binding nitrate.

Scheme 1. Structurally characterized tris(pyrazole)–anion adducts report-
ed by a) Parkin et al,[7] b) Reger et al (Tp’=HB(dmpz)3),[8] and c) Hal-
crow et al.[9]
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It is also pertinent to consider
a similar comparison between
the structures of the compound
[Re(CO)3(Hdmpz)3]BAr’4 (1)[5]

and its acetone adduct, 4, crys-
tals of which were obtained by
slow diffusion of hexane into a
concentrated solution of 1 in
dichloromethane containing a
trace of acetone. The structure
of 4 was determined by single-
crystal X-ray diffraction, and
the results are displayed in
Figure 3 and Table 3.

The structure is reminiscent
of that of [Re(CO)3-
(HtBupz)3]·NO3 (3) in that the
N�H groups of two of the pyr-
azole ligands form hydrogen
bonds with the acetone oxygen
atom (N···O=2.877(6) and
2.925(7) O). These distances
are slightly longer than those
found for the nitrate adduct
(see above), reflecting that the
hydrogen bonds with the neu-
tral acetone molecule are
weaker than those with the ni-
trate anion.[19] The N-Re-N
angles in 1 are 84.0(3),
87.28(2), and 84.1(2). In
the adduct [Re(CO)3-
(Hdmpz)3]BAr’4·acetone (4),
these angles are 84.08(15),
85.71(17), and 90.26(15)8,
again the latter and wider
angle corresponding to the two
pyrazole ligands that are simul-
taneously binding the hydro-
gen-bond acceptor, now the
molecule of acetone. Given the
differences between the struc-
tures of the two adducts 3 and
4 (the former consisting of
chains, whereas in the latter
the ions [Re(CO)3(Hdmpz)3]

+ ·
acetone and BAr’4

�1 are essen-
tially unassociated), the men-
tioned differences in the angles
can be attributed to the bind-
ing of the nitrate or acetone
guest by two pyrazole ligands
of the fac-[Re(CO)3(Hpz)3]

+

host. Thus, the binding of even
a small oxygen atom of either
nitrate or acetone causes a sig-
nificant structural distortion

Figure 1. 1H NMR titration plots of receptors 1 and 2 with different anions.
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consisting of an opening of the N-Re-N angles formed by
the metal and the two involved pyrazole ligands.

A comparison between the
Re�N distances of [Re(CO)3-
(Hdmpz)3]BAr’4 (1; 2.186(8),
2.195(7), and 2.204(6) O) and
those of the acetone adduct 4
(2.195(4), 2.234(4), and
2.239(4) O) shows a lengthen-
ing of the distances (second
and third) for the pyrazole li-
gands involved in the hydro-
gen-bonding of the substrate.
This suggests that the opening

Table 1. Binding constants for receptors 1 and 2 toward different anions.

Anion 1, Ka [m�1] 2, Ka [m�1]

Cl� 6385�362 4692�570
Br� 5593�198 543�67
I� 26�2 27�1
NO3

� 1126�28 97�6
ReO4

� 253�4 28�1
HSO4

� – 425�5

Scheme 2. Deprotonation reaction of [Re(CO)3(Hdmpz)3]BAr’4 (1) by fluoride.

Figure 2. a) Structure of [Re(CO)3(HtBupz)3]·NO3 (3); thermal ellipsoid
(30 %) plot. b) View of the intermolecular interactions in 3, which lead
to infinite chains.

Table 2. Selected bonds lengths [O] and angles [8] for 3.

bond lengths
Re(1)�N(1) 2.190(3) C(1)�O(1) 1.163(5)
Re(1)�N(3) 2.234(3) C(2)�O(2) 1.134(5)
Re(1)�N(5) 2.199(4) C(3)�O(3) 1.156(6)
Re(1)�C(1) 1.909(5) N(4)···O(4) 2.800(6)
Re(1)�C(2) 1.915(5) N(6)···O(4) 2.838(5)
Re(1)�C(3) 1.905(6) N(2)···O(6) 2.849(6)

bond angles
N(1)-Re(1)-N(3) 83.48(13) C(2)-Re(1)-C(3) 88.9(2)
N(1)-Re(1)-N(5) 83.88(13) N(4)-H(4)···O(4) 150(5)
N(3)-Re(1)-N(5) 92.15(13) N(6)-H(6)···O(4) 168(4)
C(1)-Re(1)-C(2) 86.3(2) N(2)-H(2)···O(6) 165(4)
C(1)-Re(1)-C(3) 87.71(19)

Figure 3. Structure of [Re(CO)3(Hdmpz)3]BAr’4·acetone (4); thermal el-
lipsoid (30 %) plot.

Table 3. Selected bonds lengths [O] and angles [8] for 4.

bond lengths
Re(1)�N(1) 2.195(4) C(1)�O(1) 1.137(7)
Re(1)�N(3) 2.239(4) C(2)�O(2) 1.134(7)
Re(1)�N(5) 2.234(4) C(3)�O(3) 1.135(7)
Re(1)�C(1) 1.928(6) N(4)···O(41) 2.925(7)
Re(1)�C(2) 1.948(6) N(6)···O(41) 2.877(6)
Re(1)�C(3) 1.942(6)

bond angles
N(1)-Re(1)-N(3) 85.71(17) C(1)-Re(1)-C(3) 86.8(2)
N(1)-Re(1)-N(5) 84.08(15) C(2)-Re(1)-C(3) 86.6(2)
N(3)-Re(1)-N(5) 90.26(15) N(4)-H(4)···O(41) 174.0(4)
C(1)-Re(1)-C(2) 90.0(2) N(6)-H(6)···O(41) 162.7(3)
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of the N-Re-N angles needed to accommodate the guest re-
sults, probably through a loss of orbital overlap, in weaker
Re�N bonds and therefore longer Re�N distances. This
effect is only slightly perceptible when the Re�N distances
of [Re(CO)3(HtBupz)3]BAr’4 (2) (2.178(4), 2.191(4), and
2.193(4) O) and those of [Re(CO)3(HtBupz)3]·NO3 (3)
(2.190(3), 2.199(4), and 2.234(3) O) are compared, probably
because in the latter structure the third pyrazole ligand is
also involved in relatively strong hydrogen-bonding of an
adjacent nitrate.

These observations suggest that guest binding through the
N�H groups of the three pyrazole ligands in our rhenium
receptors could be unfavorable as a result of the severe
structural distortion (from the pseudooctahedral geometry)
needed. Conversely, guest binding through the N�H groups
of the three pyrazole ligands in the adducts [HB-
(HtBupz)3·Cl]+ [7] and [ClZn(HtBupz)3·Cl][9] referred to in
the Introduction would be allowed by the pseudotetrahedral
geometry (and therefore wider N-E-N angles) about E=B
or Zn in these species. Moreover, in the hexacoordinate
adduct [Pb(Tp’)(Hdmpz)3·Cl] (Tp’=HB(dmpz)3), the N-Pb-
N angles subtended by the Hdmpz ligands are 111.8(3)8.[8]

To investigate whether anion binding by two (out of the
three) ligated pyrazoles occurs in solution, low-temperature
1H NMR spectra of both a) an equimolar mixture of 1 and
tetrabutylammonium chloride and b) compound 1 were re-
corded. CD2Cl2 was chosen as solvent to provide a tempera-
ture range wider than that available for CD3CN. At 178 K,
the C�H signal of the 3,5-dimethylpyrazole ligands in sam-
ple a, a singlet in the room temperature spectrum, decoal-
esced into two singlets displaying a 1:2 integral ratio, whilst
the same signal remained unchanged in sample b at the
same temperature. These results are consistent with chloride
exchange over pairs of pyrazole ligands, which is fast at
room temperature, being frozen. The low temperature at
which this occurs is in accordance with a kinetically facile
(DG�=34 kJ mol�1) dynamic process in which no covalent
bonds need to be broken. Therefore, the two-pyrazole anion
binding found in the solid state (see above) is maintained in
the instantaneous solution structure.

As mentioned above, receptor 1 decomposed when treat-
ed with tetrabutylammonium
hydrogensulfate. The 1H NMR
spectrum of the resulting
crude reaction mixture was
complex, suggesting the pres-
ence of several species, and no
conclusions could be drawn as
to the nature of the decompo-
sition process. Fortunately,
slow diffusion of hexane into a
concentrated solution of the
crude mixture in CH2Cl2 af-
forded single crystals that were
used for a structural determi-
nation. The results, shown in
Figure 4 and Table 4, indicate

that one of the pyrazole ligands has been protonated by
HSO4

� and dissociated from the first coordination sphere of
rhenium, on which it has been substituted by a sulfate anion
(see Scheme 3).[20] The product is the adduct [Re-
(OSO3)(CO)3(Hdmpz)2]·H2dmpz (5). Each pyrazolium
cation bridges two [Re(OSO3)(CO)3(Hdmpz)2] complex
anions through strong hydrogen bonds between pyrazolium
N�H groups and sulfate oxygen atoms (only one shown,
N···O distances of 2.680(1) and 2.687(1) O). Adventitious
water (not shown) is hydrogen-bonded to one of the ligated
pyrazoles and one of the sulfate oxygen atoms.

Figure 4. Structure of [Re(OSO3)(CO)3(Hdmpz)2]·H2dmpz (5); thermal
ellipsoid (30 %) plot.

Table 4. Selected bonds lengths [O] and angles [8] for 5.

bond lengths
Re(1)�N(1) 2.181(9) Re(1)�C(3) 1.902(17)
Re(1)�N(3) 2.209(17) C(1)�O(1) 1.158(13)
Re(1)�O(4) 2.145(6) C(2)�O(2) 1.145(14)
Re(1)�C(1) 1.880(10) C(3)�O(3) 1.17(2)
Re(1)�C(2) 1.904(11) O(6)···N(91) 2.68(1)

bond angles
N(1)-Re(1)-N(3) 82.4(4) C(1)-Re(1)-C(3) 88.2(5)
N(1)-Re(1)-O(4) 80.4(3) C(2)-Re(1)-C(3) 88.5(6)
N(3)-Re(1)-O(4) 82.1(3) N(91)-H(91)···O(6) 171(14)
C(1)-Re(1)-C(2) 87.8(5)

Scheme 3. Reaction of [Re(CO)3(Hdmpz)3]BAr’4 (1) with a hydrogensulfate anion.
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The fact that 2 is stable toward HSO4
� , whereas this

anion caused the decomposition of 1, can be attributed to
the better protection of the metal first coordination sphere
imparted by the bulky tBu groups.[16]

In summary, we have reported a new class of transition-
metal-based receptors for anions; namely, the compounds
[Re(CO)3(Hdmpz)3]BAr’4 (1) and [Re(CO)3(HtBupz)3]BAr’4
(2). Monodeprotonation by dihydrogenphosphate or fluo-
ride, or pyrazole protonation coupled to pyrazole substitu-
tion by anion upon reaction with hydrogensulfate have been
found to delineate the stability boundaries of 1 and 2. Guest
binding has been found to occur through two of the three
N�H groups, and to require an opening of the N-Re-N
angle for the involved pyrazole ligands. The more severe
hindrance opposed to anion approach by the bulky tBu sub-
stituents in 2 makes this receptor more stable, although it
leads also to less strong binding.

Experimental Section

General : All manipulations were carried out under a nitrogen atmos-
phere using Schlenk techniques or a MBraun drybox. Receptors 1 and 2
were prepared as previously reported.[5] Tetrabutylammonium salts were
purchased from Fluka or Aldrich. Deuterated acetonitrile (Cambridge
Isotope Laboratories, Inc.) was stored under nitrogen in Young tubes.
NMR spectra were recorded on Bruker AC-300 and DPX-300 instru-
ments. IR solution spectra were obtained with a Perkin–Elmer FT 1720-
X spectrometer using 0.2-mm CaF2 cells. NMR samples were prepared
under nitrogen using Kontes manifolds purchased from Aldrich. Oven-
dried 5-mm NMR tubes were subjected to several vacuum–nitrogen
cycles, filled with the solution of the receptor (prepared separately in a
Schlenk tube, typically in a concentration of 10�2

m in CD3CN) by means
of a 1 mL syringe, and stoppered with rubber septa. After the NMR spec-

trum of the receptor was recorded, the successive aliquots of the tetrabu-
tylammonium salt (typically 4S 10�2

m in CD3CN, separately prepared
and kept in a septum-stoppered vial during the titration) were injected
through the septum using Hamilton mycrosyringes (10–100 mL). The
volume of each addition was 10 mL before reaching the saturation zone
(a nearly horizontal line in the titration profile), and 20 or 40 mL after-
wards. When the change in d is small (as for ReO4

�), 20 mL of salt solu-
tion was added from the beginning. Data were treated by using the
WinEQNMR program.[15]

Crystal structure determination for compounds 3, 4 and 5: A suitable
crystal was attached to a glass fiber and transferred to a Bruker AXS
SMART 1000 diffractometer with graphite-monochromatized MoKa radi-
ation and a CCD area detector. One hemisphere of the reciprocal space
was collected in each case. Raw frame data were integrated with the
SAINT[21] program. The structures were solved by direct methods with
SHELXTL.[22] An empirical absorption correction was applied with the
program SADABS.[23] In every structure all non-hydrogen atoms were re-
fined anisotropically. Hydrogen atoms were set in calculated positions
and refined as riding atoms. Drawings and other calculations were made
with SHELXTL, PLATON,[24] and PARST[25] under WINGX.[26] Crystal
and refinement details are collected in Table 5.

CCDC-279519 (3), CCDC-279520 (4), and CCDC-279521 (5) contain the
supplementary crystallographic data for this paper. These data can be ob-
tained free of charge from the Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif.
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